

Three types of muscle

- Cardiac muscle
 Involuntary
- Smooth muscle
 Involuntary
- · Skeletal muscle
 - Voluntary

KIN 856 – Physical Bases of Coaching Muscle Function

Involuntary

Myofibrils - actin and myosin

- Myosin thick filament
 Globular heads
- Actin thin filament
- Myosin binds to actin form crossbridges
- Formation and breaking of crossbriges is what underlies muscle contraction

Actin Tropomyosin (thin Hamment) Myosin crossbridge (heat) Myosin (thick filament) Myosin (thick filament)

356 – Physical Bases of Coaching le Function

Looking closely at the myofibril

Contraction

- Repeated cycling shortens each sarcomere
- As sarcomeres in series with one another shorten so does the muscle.

KIN 856 – Physical Bases of Coaching Muscle Function

Sarcomere Force - Length Characteristics

- Every muscle and muscle fiber has an optimal length (~ 2.2 μm)
 - Where it can form the greatest number of crossbridges and thereby produce the most force.
- At shorter and longer lengths foce is compromised
 - Shorter actin molecules overlap
 - Longer myosin gets pulled from actin

Muscle Force - Length Curve

- Three things shown on this curve
- 1. Active muscle
- 2. Passive force
- Stretched connective tissue
 Total force
 Sum of both

Muscle Force - Velocity Characteristics

- Force and velocity are inversely related
 - Fast contraction low force
 - High force slow contraction speed
- Greatest force during an isometric contraction – right?

IN 856 – Physical Bases of Coaching Iuscle Function

Elastic Energy Storage

- Muscles stretched while under tension will store energy
- Can be returned during an immediate concentric contraction
- Augment performance
 - Vertical jump
 - ✓ Baseball pitch
 - ✓ Tennis serve

All muscle fibers are not the same

- Different fiber types
 - Type I: Slow twitch lower force, fatigue resistant
 - Type IIa: Fast twitch higher force, fatigue resistant
 - Type IIb: Fast twitch highest force, fatigue quickly

KIN 856 – Physical Bases of Coaching Muscle Function

Muscle Fiber Type Characteristics

Comparison of Slow and Fast Twitch Fibers				
	Type I	Type IIa	Type IIb	
	(slow-oxidative)	(fast-oxidative)	(fast-glycolytic)	
Use (examples)	Posture	Walking	Sprinting	
Motor unit size	100+ fibers	2-6 fibers	2-6 fibers	
ATPase activity*	Low	High	High	
Contraction speed	Slow	Fast	Fast	
Fatigue resistance	High	Intermediate	Low	
Myoglobin content	High	High	Low	
Capillary density	High	Intermediate	Low	
Fiber color	Red (dark)	Red	White	
Glycolytic enzymes	Low	Intermediate	High	
Mitochondrial content	Packed	Intermediate	Sparse	
*Rapid breakdown of ATP		See also Table 12-2 in Silverthorn		
856 – Physical Bases of Coaching				

Muscle Fiber Types

Muscle Fiber Types

Fiber Types

- EDL extensor digitorum longus
 - ✓ All Type IIb
 - Higher twitch
 - Higher force
 - Earlier onset of fatigue

Soleus

- ✓ All Type I, Ila
- Lower twitch
- Fatigue resistant

Fiber type and sport

		Type IIa Oxidative	Type IIb Glycolytic
Marathon	ers	82%	18%
Distance	swimmers	74	26
Couch po	tatoes	45	55
Sprinters		37	63

Motor unit

 Equal to a α-motor neuron and all the muscle fibers it innervates

Myelin

- Signal transmission
- 'Coding' of movement patterns
- Neurotransmitte
- Acetylcholine
 KIN 856 Physical Bases of Coaching
 Muscle Function

Muscles are made up of many motor units of different types

- Motor units are 'intertwined'
- All muscle fibers in a motor unit are of the same fiber type (e.g. Type I)
- Motor units can include 1 – 100s of muscle fibers.

Neuromisoular junc	
(8) TWO MOTOR UNITS	
Matri	

KIN 856 – Physical Bases of Coaching Auscle Function

Motor Cortex

- Area 4 motor cortex
 Motor tracts
- Pyramidal system
- 85% cross over to the contalateral side
- R brain controls L side
 Motor cortex organized by movement
- Area 6 Premotor cortex - planning

Muscle/ Fiber size and strength

- Greater the cross sectional area the greater the strength
- Regular strength training increases muscle x-sectional area
- Also related to function
 Fine motor control small
 - Strength -larger
- N 856 Physical Bases of Coaching Iscle Function

Muscle Spindles

- Intrafusal fibers
- In parallel with muscle fibers
- Proprioception sense changes in length and contraction velocity
- Innervated by γ- motor neurons
 - Establish set point
 - Gauge stretch
 - Provide feedback to CNS
- Stretch reflex

Agonist/ Antagonist Groups

- Agonist muscle that causes or supports the movement of interest
- Antagonist muscle or muscle group that act against the agonists

IN 856 – Physical Bases of Coaching luscle Function

Golgi Bodies

- Located in tendons
- Sense change in force
- Provide feedback to CNS
- Too much force shuts down muscle and all agonists
- Safety measure

KIN 856 – Physical Bases of Coaching Muscle Function

Muscle adapts to stress...

- Neuro-muscular changes
 - Coordinated firing of MUs
 - Recruitment of more MUsRelaxation of antagonists
- Hypertrophy
 - Increases in fiber sizeMore actin and myosin
- · Hyperplasia
- Increases in fiber number?
- Evidence does not support

Can fibers change type?

- Short answer NO!
 Type I to Type II
- However, some ability to transfer within type
 - Type IIa to Type IIbType IIB to Type IIa
- What fiber type does an athlete have?

856 – Physical Bases of Coaching scie Function

Metabolic and Hormonal Adaptations

- Increased energy stores
 Phospocreatine (CP), ATP, glycogen
- Increased levels of testosterone and growth hormone after strength training (acute)

Control of Force - Recruitment

Size Principle: Recruit larger and

KIN 856 – Physical Bases of Coaching Muscle Function

- stronger motor units as force needs increase
- Low force/ precision smaller, slow twitch motor units
- High force/ gross larger, stronger fast twitch motor units

The second secon

Control of Force - Rate Coding

- Force in a muscle can increase by increasing the rate of stimulation by CNS
- One pulse \rightarrow twitch
- Many pulses → tetanus, fully contracted

IN 856 – Physical Bases of Coaching Iuscle Function

Muscular Phenomena – Cross Training

- Training of one limb can have transference to the other limb.
 60% transfer
- Specificity
 - Ex. leg to leg, not leg to arm
- Theories?

KIN 856 – Physical Bases of Coaching Muscle Function

 Bilateral activation of same muscle groups
 Stabilization

Muscular Phenomena -Bilateral Deficit

- Strength produced in a bilateral effort is not equal to sum of both sides individually
- Inhibitory mechanism?
- Speed of motion
- Level of activation

5000 2000 2000 1000 0 0 Two lugs: Right leg: Left leg: Sum of legs:

Electrical Activity - EMG

- Electrodes pick up electrical activity associated with contraction.
- Magnitude often proportional to strength of contraction
- Cautions...

(IN 856 – Physical Bases of Coaching Iuscle Function

Uses of EMG

- Determine when muscles are on/ off
- Compare timing
- Relative level of activation
 - Within a testing session

	
↓	
	** ****

KIN 856 – Physical Bases of Coaching Muscle Function

Muscle Identification Exercise

Using the movement description you developed earlier in the unit, identify and list the muscles you think are active in each phase of the movement. Next to each muscle, identify the function the muscle serves – e.g. flexes the shoulder, internally rotates the leg, contracts isometrically to stabilize the shoulder blade, etc. Submit the exercise in the appropriately named dropbox.